

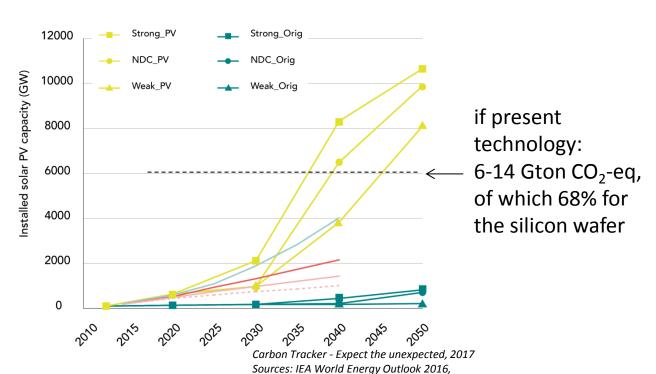
Cu-PV project 2012-2015: cradle to cradle sustainable PV modules

Brussels
Bart Geerligs
20 March 2017

www.sustainablepv.eu/cu-pv

Contents

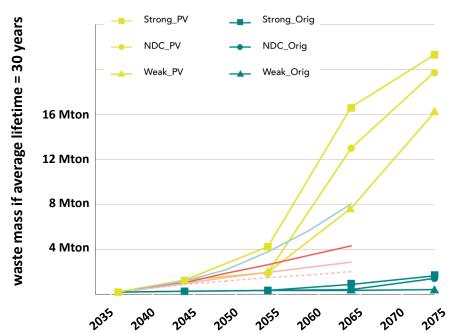
- Sustainability of PV ("photovoltaics": solar electricity)
- The Cu-PV project: integrated technology approach on the main sustainability issues
- Partners and roles
- Conclusions and outlook



Significant growth of PV

- CO2 footprint of PV is small: 38-82 g CO2-eq/kWh
- Nevertheless, reduction of footprint will be beneficial

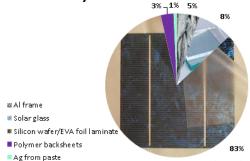
BNEF New Energy Outlook 2016, and CTI-Imperial analysis 2016.

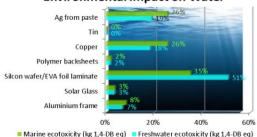


Significant growth of PV

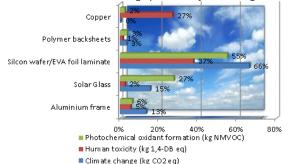
Also waste volume has to be anticipated (with some delay)

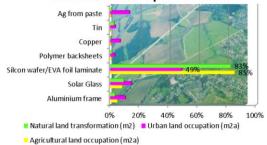
Carbon Tracker - Expect the unexpected, 2017 Sources: IEA World Energy Outlook 2016, BNEF New Energy Outlook 2016, and CTI-Imperial analysis 2016.





LCA analysis of PV

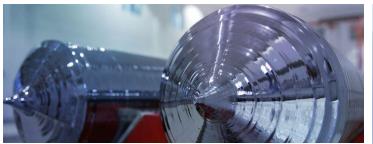

PV module by EMBEDDED ENERGY $_{3\%_{\neg}1\%_{-}5\%}^{\bullet}$

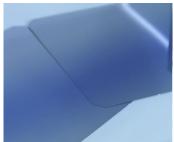

Environmental Impact on Water

Climate change, Toxicity & Smog

Environmental Impact on Land

C. Olson et al., EUPVSEC 2013





Sustainability issues tackled in the Cu-PV project


1. CO₂ footprint: mainly Si wafer: reduce thickness & recycle

- 2. Ag: used for metallisation: replace
- 3. Recycling: increase recovered value

Project partners

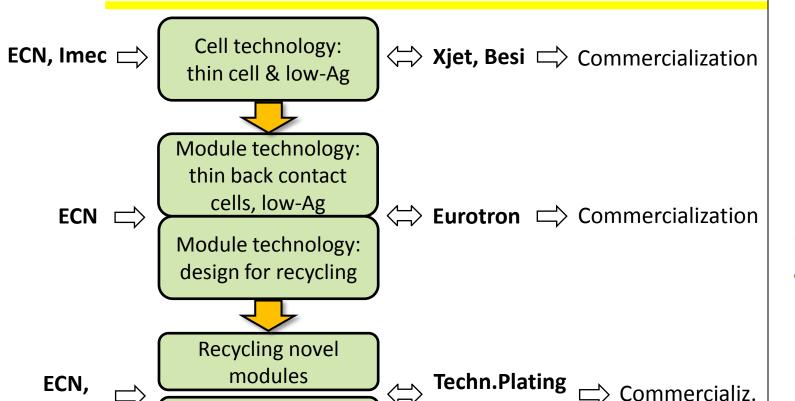
- OEMs: companies making production equipment for metallisation of solar cells, and for manufacturing modules:
 Xjet, Besi, Eurotron
- End users, with own R&D: cell and module producer: Siliken
 SME intent on setting up recycling business: Technical Plating
- PV CYCLE: a non-profit member-based organisation managing waste (collection and recycling) for PV companies
- R&D institutes: solar cell and module technology, with track record in transfer to industry: Imec, ECN LCA expertise: ECN

Project partners

- OEMs: companies making production equipment for metallisation of solar cells, and for manufacturing modules:
 Xjet, Besi, Eurotron
- End users, with own R&D:
 cell and module producer: Siliken

Due to financial problems **Siliken** had to withdraw at start of project, and tasks were distributed over the other partners.

- waste (collection and recycling) for PV companies
- R&D institutes: solar cell and module technology, with track record in transfer to industry: Imec, ECN
 LCA expertise: ECN

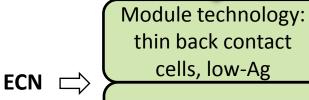


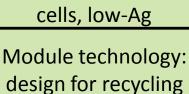
Project partners

Recycling present modules

Eurotron







ECN, Imec Commercialization **IPR**

> Commercializ.

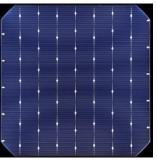
Eurotron \Longrightarrow Commercialization

Recycling novel modules

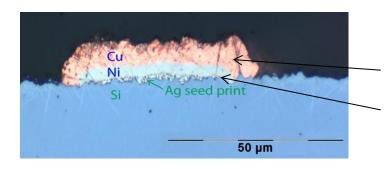
Techn.Plating **Eurotron** Recycling present modules

Project approach

- Multiple technology development lines
 - 1. very close to industry for rapid introduction & rapid benefit to industry partners
 - print seed&plate metallization; recycling of present PV modules
 - 2. more advanced technology with more environmental benefit
 - PVD seed&plate metallization; design for recycling
- Interaction between the solutions for the different problems
 - New module technology to reduce silicon consumption and at the same time enhance recyclability
 - New cell technology to reduce silicon consumption and at the same time allow solutions to reduce silver consumption
- PV CYCLE as watch-dog for feasibility of recycling; and feedback from network (e.g. survey at start of project, workshop)



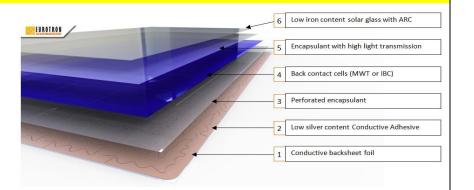
Cu-PV solar cells


contacted on rear only - less stress in module -allowing thinner wafers

instead of Ag contacts, using a Cu-plated layer stack

Besi-Meco NiCu plate

Xjet seed print 90% Ag reduction



Cu-PV modules

 back-contact module technology - allowing extremely thin cells (120 μm in project, recently 80 μm)

 thermoplastic encapsulant, modified frame and backsheet allowing full wafer/cell recovery

Some results

- Cell technology cell thickness from 180 μm to 120 μm;
 Ag consumption reduced by 70%/90%/>95%; efficiency to 22.5%
- Module technology Pb-free interconnection; back-contact technology for 6" interdigitated-back-contact cells; thermoplastic encapsulation; F-free backsheet; new framing
- Recycling for present conventional modules: enhanced separation – backsheet, silver, clean glass, (silicon) recovered; for thermoplast based modules: recovery of intact glass sheets and large fraction of intact wafers

Plating

- Plate-on-PVD-seed metallization process for IBC developed
- Ag reduction >95% (Ag capping layer still required)
- efficiency 22.5%
- 120 μm thin cells; handling of 100 μm thin wafers

Dissemination: conferences, exhibitions, customer contacts

Plate-on-seed line sold by Meco-Besi

Confident about market growth

Seed printing for plating

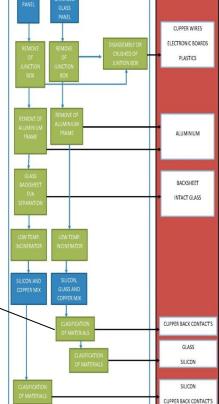
- Plate-on-printed-seed metallization process developed for all solar cell architectures, including standard industrial
- Ag reduction 90% for inkjet printing, 70% for screen printing
- 120 μm thin cells
- Close to industrial process, proven, yet limited industry interest
- Xjet decided to withdraw from PV business
- Xjet willing to license technology

Back contact module technology

- Technology for IBC cells, 120 μm thickness (recently 80 μm), thermoplastic encapsulant, production conductive backsheet.
- Dissemination: conferences, exhibitions, customer contacts
- Several production lines sold; press release in April 2017
- Technology ready for drastic reduction of Si wafer thickness – however currently manufacturers still use normal wafer thickness

PROCESS

Recycling


- Semi-automated disassembly / thermal / sorting process for recycling of current PV modules
- Positive business case evaluation by Technical Plating with support from PV CYCLE and ECN – unfortunately Technical Plating encountered financial problems at end of project

Conclusions and outlook

- Mix of complementary partners along the value chain
- 3x price drop of PV modules during 2010-2012 caused problems for partners, and in general reduces adoption of innovations
- Inkjet seed printing technology was possibly too disruptive
- Back contact module technologies either moved to production or are in further test&development for production
 - wafer thickness should follow suit, if only for cost reasons
 - environmental footprint labeling would help
- Back contact cell technologies moved to industrial tests
- Adoption of project recycling technologies and design for recycling face challenges of relatively low value of component materials, and reliable supply of end-of-life modules
 - environmental footprint labeling might help

