

ACHIEVEMENTS AND CHALLENGES TOWARDS HIGH EFFICIENCY, LARGE AREA IBC SOLAR CELLS

BARRY O'SULLIVAN, SUKHVINDER SINGH, MAARTEN DEBUCQUOY, JOZEF SZLUFCIK

imec, Kapeldreef 75, B-3001 Leuven, Belgium

Barry.OSullivan@imec.be

Introduction

- IBC cell process flow
- Upscaling to full size devices
- Summary: Achievements & Challenges

- Introduction
- ► IBC cell process flow
- Upscaling to full size devices
- Summary: Achievements & Challenges

INTERDIGITATED BACK CONTACT SILICON SOLAR CELLS

IBC: STATE-OF-THE-ART

Industrial and semi-industrial homo-junction IBC cells

Reference	Year	Substrate	Area (cm ²)	Eff. (%)
¹ D. Smith, SunPower	2014	CZ, n-type	155	24.5
¹ D. Smith, SunPower	2014	CZ, n-type	121	25.0
² C.B. Mo, Samsung SDI/Varian	2012	CZ, n-type	155	22.4
³ A. Halm / J. Libal, ISC Konstanz / Silfab	2012	CZ, n-type	243	21.3
⁴ Bosch / ISFH	2013	CZ, n-type	~240	22.1
⁵ E. Franklin, ANU/Trina Solar	2014	CZ, n-type	~240	22.9

¹ D. Smith et al., 40th IEEE PVSC, Denver, USA (2014)

² C.B. Mo et al., 27nd EUPVSEC, Frankfurt, Germany (2012)

³A. Halm et al., 27nd EUPVSEC, Frankfurt, Germany (2012)

⁴ Bosch SE, press release (2013)

⁵ E. Franklin et al., SNEC, Shanghai, China (2014)

IBC CELLS AT IMEC

2012:

Transfer of 2x2 cm² cells baseline from 4 inch FZ to **15.6** cm CZ substrates

2013: **Stable baseline**, applied for new developments

- Innovation
- Process simplification
- Up scaling cell area
- Incorporation into module

2007: **IBC** research started at imec on p- and n-type 2011: Start of **IBC** platform

development: $2x2 \text{ cm}^2$ cells on 4 inch n-type FZ substrates

BASELINE AT IMEC

Wafers:

- I5.6xI5.6 cm² semi-square
- N-type Cz

Processing:

- Diffusion
- Photolithography

Cells:

- 25 cells with an active area of 2x2 cm²
- Surrounded by test structures

IBC STATE-OF-THE-ART

Industrial and semi-industrial homo-junction IBC cells

Reference	Year	Substrate	Area (cm²)	Eff. (%)
¹ D. Smith, SunPower	2014	CZ, n-type	155	24.5
¹ D. Smith, SunPower	2014	CZ, n-type	121	25.0
² C.B. Mo, Samsung SDI/Varian	2012	CZ, n-type	155	22.4
³ A. Halm / J. Libal, ISC Konstanz / Silfab	2012	CZ, n-type	243	21.3
⁴ Bosch / ISFH	2013	CZ, n-type	~240	22.1
⁵ E. Franklin, ANU/Trina Solar	2014	CZ, n-type	~240	22.9

Imec's small area IBC platform efficiencies

Reference	Year	Substrate	Area (cm²)	Eff. (%)
⁶ M.Aleman, on 4 inch FZ	2012	FZ, n-type	4	23.3*
⁷ O'Sullivan, on 156 mm CZ	2013	CZ, n-type	4	23.1*

* Externally confirmed

⁶ M. Aleman, et al., 2nd SiliconPV, Leuven, Belgium (2012);

⁷ B.J. O'Sullivan, et al., 28th EUPVSEC, Paris, France (2013)

Introduction

- IBC cell process flow
- Upscaling to full size devices
- Summary: Achievements & Challenges

BASELINE PROCESS CZ SILICON

IMEC © IMEC 2014

B O'Sullivan et. al., Proc. EUPVSEC, (2013)

LASER ABLATION FOR BSF DEFINITION

- **Basic laser parameters**
- Power
- Speed
- Continuous lines required
- Overlap between adjacent lines
- Additional optimization performed
- Emitter etch time after laser ablation

LASER ABLATION: PROCESS DEVELOPMENT

Excessive laser speed/ insufficient line overlap

Insufficient laser power/line overlap

Excessive overlap within one line

Optimum power and line overlap

imec

CONTACT HOLE DEFINITION

- p⁺ Si emitter
- Thermal SiO₂
- On 10¹⁹ cm⁻³ Boron doped region
- n⁺ Si BSF region
- Thermal SiO₂
- On 10¹⁹ cm⁻³ Phosphorus doped region

LASER ABLATED CONTACT HOLES

Increased BSF contact

Reduced emitter contact

B O'Sullivan et. al., Proc. EUPVSEC, (2013)

SCREEN PRINTING FOR METAL PATTERNING

imec © IMEC 2014

EFFECT OF BSF METAL WIDTH

Paste control results in thinner BSF metal width

- Fill factor penalty results
- Fitting well with calculated trend line for photolitho case

DEVICE LEVEL

Laser ablation

- BSF region definition
- Contact hole definition

17

Screen printing

Metal patterning

Patterning method	J _{sc} [mA/cm²]	V _{oc} [mV]	FF [%]	Eta [%]
Photolithography	41.2	690	79.5	22.6
Ablation & Screen printing	41.3	687	78.5	22.2*

* Externally confirmed

S Singh et. al., Proc. EUPVSEC, (2014)

SUMMARY: SMALL AREA CELLS

Rear side patterning

- Emitter definition: laser ablation of oxide
- Contact opening: laser ablation of oxide
- Metal patterning: screen printing polymer paste

Photolitho-free best cell efficiency 22.2 %

Design rule defined: alignment accuracy vs losses

Introduction

- ► IBC cell process flow
- Upscaling to full size devices
 - Impact of cell area on characteristics
- Summary: Achievements & Challenges

Upscale cell design

Extend laser ablation and screen printing to full area

SUMMARY IV RESULTS

	Area [cm²]	J _{sc} [m A /cm²]	V _{oc} [mV]	FF [%]	Eta [%]	# cells
Average	239	40.2	685	76.5	21.0	9
Best cell	239	40. I	686	77.4	21.3	

Promising J_{sc} and V_{oc} values FF limiting performance

IMPACT OF CELL AREA

Best cell

Size [cm²]	Metal	J _{sc} [mA/cm²]	V _{oc} [mV]	FF [%]	η [%]
239	3 μm AlSi	40. I	686	77.4	21.3
4	$2\ \mu m$ AlSi	41.3	687	78.5	22.2*

 V_{oc} independent of cell size J_{sc} and FF reduce with cell size

INFLUENCE OF DESIGNATED ILLUMINATION APERTURE

(AND WHAT IT SHADES ⁽²⁾)

Lower J_{sc} and FF when busbar's included

FILL FACTOR LOSS ANALYSIS

Series resistance $\Delta FF_{R_s} = \frac{J_{mpp}^2 R_s}{J_{sc} V_{oc}}$ Shunt resistance $\Delta FF_{R_{sh}} = \frac{\left(V_{mpp} + J_{mpp}R_s\right)^2}{R_{sh} J_{sc} V_{oc}}$

 $\mathbf{J}_{02} \mathbf{loss} \qquad \qquad \Delta FF_{J_{02}} = FF_{J_{01}} - FF_0$

Additional busbar-induced loss $\Delta FF_{BB} = pFF - FF - \Delta FF_{R_s}$

Allows decoupling of resistive loss mechanisms

A Khanna, IEEE J. Photovoltaics, (2013)

imec

© IMEC 2014

B O'Sullivan, WC-PEC, (2014)

Series resistance loss is dominant

Resistive penalty for emitter BB inclusion

No significant impact on FF of BSF busbar

Significant series resistance losses present Additional emitter busbar-induced loss

Similar FF losses for small and large area cells

Series and Busbar resistances dominate

IMPACT OF BSF CONTACT DENSITY

BSF contact resistance on indicates potential for FF improvement

30% higher density implemented

SERIES RESISTANCE

Lateral non-uniformity in electroluminescence

Highest signal close to BSF contact point

Slight impact of increased grid density

Resistance dominated by BSF metal design

Introduction

- ► IBC cell process flow
- Upscaling to full size devices
- Summary: Achievements & Challenges

ACHIEVEMENTS

Laser ablation & polymer print processes developed

Large area IBC cells designed and fabricated

- Highest efficiency: 21.3 %
- Promising V_{oc} and J_{sc} values

Detailed analysis of fill factor losses

Framework for performance improvement

CHALLENGES

Fill factor loss ...

- BSF metal width / paste control trade-off
- Dependence on distance from contact point

Move towards module compatible metallisation

Cu plating development ongoing

Thank you for your attention !

Financial support

imec's industrial affiliation program in PV

European Union's 7th Framework Programme